ERRATA

Corrections to published RIFE reports

	Page,	Section		Comment						
RIFE 26,	Page 3	33	,	The paragraph should read:						
2020				"During the first pandemic lockdown period (March 2020 to July 2020), there were no operations carried out at Magnox sites and discharge monitoring was suspended with agreement from the Environment Agency in accordance with published COVID-19 regulatory positions statements, which are available on the www.gov.uk website: https://www.gov.uk/government/collections/covid-19-regulatory-position-statements . Assessment of discharges were made once the sites returned to operations an all discharge reporting completed by September 2020."						
	Page 2	264	,	The paragr	aph shoul	d read:				
			i 6 1	"The Government of the Isle of Man undertakes their or independent radioactivity monitoring programme and p an indication of the far-field effects of current and historical discharges from Sellafield and other UK nuclear sites. The reported annually:						

The dose due to nuclear industry discharges was 0.055 mSv
The dose due to nuclear industry discharges was 0.064mSv
The dose due to nuclear industry discharges was 0.062 mSv

The row labels 131m and 137 Xe, should read 131m Xe and 137 Cs, Page 199, Table 6.7 respectively

	Page, Section	Comment
	Page 211, Figure 7.5	The figure caption should read "Concentrations (Bq l-1) of caesium-137 in surface water from the English Channel, March-April, 2019
RIFE 24, 2018	Page 47, Figure 2.5	The 2018 ⁹⁹ Tc value for Ribble Estuary Shrimp should be 0.12 Bqkg ⁻¹ (incorrectly reported as 0.77 Bqkg ⁻¹). This is plotted correctly in Figure 2.5, RIFE 25.
	Page 57, Figure 2.11	The 2018 ⁹⁹ Tc value at Bradwell should be <6.5 Bqkg ⁻¹ . This is plotted correctly in Figure 2.11, RIFE 25. The 2017 and 2018 ⁹⁹ Tc values for the Isle of Scilly should be 2.8 and 4.7 Bqkg ⁻¹ , respectively. These are plotted correctly in Figure 2.11, RIFE 25. Further data for Isle of Scilly are presented below.

Concent	trations of radio	nuclides in a	quatic plants f	rom the	Isle of Scil	ly			
Year	Location	Material	No. of	Mean radioactivity concentration (fresh), Bq kg ⁻¹					
			sampling observations	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	⁹⁹ Tc	¹⁰⁶ Ru	^{110m} Ag
2017	Isle of Scilly	Seaweed	1	<0.76	<0.86	<0.44	2.8	<4.0	<0.72
2018	Isle of Scilly	Seaweed	1	<0.55	<0.70	<0.36	4.7	<3.4	<0.53
Year	Location	ocation Material	No. of	Mean rad	dioactivity co	ncentration ((fresh), Bq kç	g ⁻¹	
			sampling observations	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	¹⁴⁴ Ce	¹⁵⁵ Eu	²⁴¹ Am
2017	Isle of Scilly	Seaweed	1	<2.4	<0.64	<0.50	<1.5	<0.75	<0.54
2018	Isle of Scilly	Seaweed	1	<2.1	<0.48	< 0.40	<1.8	< 0.84	<0.57

All measurements are made on behalf of the Environment Agency

Page 74/75, The footnotes in the table have been applied incorrectly.

Table 2.2a Footnotes d and f should apply to Ribble Estuary Shrimps Footnotes e should apply to Ribble Estuary Mussels Footnote g should apply to Freshwater from Ulnes Walton

Page, Section	Comment
Table 2.3b and Table 2.10	The Beta radiation dose rates reported in Tables 2.3b and 2.10 are incorrectly presented. Corrected data presented below.
	The paragraph "The equivalent dose to skin" (page 45)
	Should read "The equivalent dose to skin as a result of fishermen handling their fishing gear (which is potentially contaminated with radioactivity) was 0.030 mSv in 2018."
	The sentence "In 2018, the skin doses to a fisherman from handling fishing gear" (Page 54)
	Should read "In 2018, the skin doses to a fisherman from handling fishing gear (including a component due to naturally occurring radiation), and a bait digger and shellfish collector from handling sediment, were 0.13 mSv and 0.064 mSv, respectively (Table 2.17)"
	These revised doses apply to relevant parts of Tables 1.4, 2.1 and 2.17.

Table 2.3(b) Monitoring of radiation dose rates near Springfields, 2018									
Location	No. of sampling observations	μGy h ⁻¹							
Mean beta dos	e rates		µSv h⁻¹						
Springfields	Fishing net	1	<0.089						
Springfields	Tarpaulin	1	<0.090						

Table 2.10 Beta radiation dose rates on contact with fishing gear on vessels operating off Sellafield, 2018									
Vessel or location	Type of gear	No. of sampling observations	Mean beta dose rate in tissue, μSv h-1						
101	Nets	1	<0.084						
111	Nets	1	<0.083						
South 1	Lobster pots	1	0.12						
South 2	Lobster pots	1	<0.092						
South 3	Lobster pots	1	<0.092						
South 4	Lobster pots	1	<0.092						

Page 80 Table 2.5	The value of 99Tc in Whitehave	n Cod should read < 0.15 Ba kg ⁻¹

Page 109, Table 3.2(a) The Gross beta values in freshwater were omitted. These are presented below.

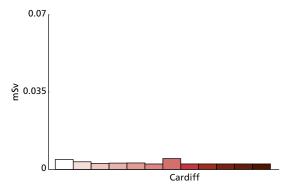
Location	Gross beta, Bq I-1				
Loch Calder	0.090				
Loch Shurrery	0.048				
Loch Baligill	0.13				
Heldale Water	0.060				

Page 112, Table 3.4(a) The 2018 activity concentration data for Seaweed from Bognor Rock were omitted. These are presented below.

Table 3.4(a) Concentrations of radionuclides in aquatic plants near Winfrith, 2018								
Material	Location	No. of	Mean radioactivity concentration (fresh), Bq kg ⁻¹					
		sampling observations	⁶⁰ Co	⁹⁹ Tc	¹³⁷ Cs	²⁴¹ Am		
Marine samples								
Seaweed	Bognor Rock	2E	< 0.57	<1.7	< 0.41	< 0.44		

E Measurements labelled "E" are made on behalf of the Environment Agency,

Page 115, 121 Page 115.


The key point for Dungeness should read "Gaseous discharges of tritium and carbon-14 decreased, and liquid discharges of tritium increased and sulphur-35 decreased, from Dungeness B in 2018"

Page 121.

The sentence starting "Discharges of tritium..." should read "Discharges of tritium increased and sulphur-35 decreased (both by small amounts) from Dungeness B..."

Page 151, Figure 5.1 The caption descriptor should read "including discharges to Silchester sewer and Aldermaston Stream".

Page 176, Figure 6.1 The plot for Cardiff is incorrect, it is presented correctly below.

Page 209, Table 8.12 Table 8.12 was omitted from RIFE 24, these data are presented below.

The paragraph "SEPA took a series of marine sediment and seawater..." Should be replaced by

"In 2018, SEPA took a series of marine sediment and seawater samples from across Scotland and the results are given in Table 8.12. All radionuclides were reported as less than values in seawater. Tritium was positively detected in two seawater samples from Cloch Point. Caesium-137, europium-155 and americium-241 were positively detected in some sediment samples. The results are generally consistent with those to be expected from measurements at nuclear licensed sites in this report (see, for example, Section 3). Overall, the results support the concept of a reducing trend in concentration with distance from the Sellafield site, albeit confounded by natural variability due to sediment type."

Table 8.12 Concentrations of radionuclides in marine sediments and seawater - background survey in Scotland, 2018 ^a												
Sample	Sample source	No. of	Mean ra	Mean radioactivity concentration, Bq kg ⁻¹ (dry) ^b								
location and type		sampling observ- ations	³ H	⁶⁰ Co	⁹⁵ Nb	¹¹⁰ Ag	¹²⁵ Sb	¹³⁷ Cs	¹⁵⁵ Eu	²⁴¹ Am	Gross alpha	Gross beta
Marine Sedin	nents											
Firth of Forth	Lower Taylorton	1	<5.0	< 0.14	<8.7	< 0.33	< 0.40	4.4	< 0.41	0.81	220	1700
Firth of Forth	Bannockburn	1	<5.0	<0.13	<7.8	<0.32	<0.37	5.3	<0.29	0.82	220	1800
Firth of Forth	Fallin	1	<5.0	<0.15	<8.4	<0.34	<0.43	6.9	<0.32	1.1	250	2100
Firth of Forth	Devon Confluence	1	<5.0	< 0.14	<5.3	<0.33	<0.38	13	2.2	1.6	25	2000
Forth Estuary	Swing Bridge	1	<5.0	<0.10	<4.8	<0.19	<0.23	3.2	<0.26	<0.29	220	1500
Firth of Clyde	NW Cloch Point	1	<5.0	< 0.11	<7.0	<0.26	<0.31	14	<0.21	4.3	190	1400
Firth of Clyde	West Cloch Point	1	<5.0	< 0.12	<7.6	<0.28	< 0.40	29	<0.30	6.80	280	1600
Inner Clyde	Leven Confluence	1	<5.0	<0.10	<3.1	<0.13	<0.15	2.0	<0.19	<0.18	83	550
Inner Clyde	Dalmuir	1	<5.0	< 0.10	<6.2	<0.23	< 0.31	15	<0.23	0.8	82	1200
Inner Clyde	Kelvin	1	<5.0	<0.13	<8.9	< 0.33	< 0.44	38	<0.28	1.6	110	1200
Seawater												
Firth of Forth	Lower Taylorton	1	<1.0	<0.10	<0.24	<0.10	<0.16	<0.10	<0.11	<0.10		
Firth of Forth	Bannockburn	1	<1.0	<0.10	<0.23	<0.10	<0.12	<0.10	<0.10	<0.10		
Firth of Forth	Fallin	1	<1.0	<0.10	<0.19	<0.10	<0.14	<0.10	<0.11	<0.10		
Firth of Forth	Devon Confluence	1	<1.0	<0.1	<0.25	<0.10	<0.15	<0.10	<0.14	<0.10		
Forth Estuary	Swing Bridge	1	<1.0	<0.10	<0.26	<0.10	<0.15	<0.10	<0.13	<0.10		
Firth of Clyde	NW Cloch Point	1	1.1	<0.10	<0.16	<0.10	<0.14	<0.10	<0.10	<0.10		
Firth of Clyde	West Cloch Point	1	1.4	<0.10	<0.17	<0.10	<0.14	<0.15	<0.10	<0.12		
Inner Clyde	Leven Confluence	1	<1.0	<0.10	<0.13	<0.10	<0.13	<0.10	<0.11	<0.10		
Inner Clyde	Dalmuir	1	<1.0	<0.10	<0.17	<0.10	<0.18	<0.10	<0.16	<0.10		
Inner Clyde	Kelvin	1	<1.0	< 0.10	< 0.13	< 0.10	< 0.13	< 0.10	< 0.10	< 0.10		

Results are available for other radionuclides detected by gamma spectrometry. All such results are less than the limit of detection Except for seawater where units are $Bq \ l^{-1}$

Page, S	Section
---------	---------

Comment

Appendix 1, page 24, Table X2.2

The consumption and occupancy rates for the Sellafield M (Sellafield fishing community 2014-2018) group should read:

- 20 kg y⁻¹ Cod
- 35 kg y⁻¹ Other fish
- 11 kg y⁻¹ Crabs
- 14 kg y⁻¹ Lobsters
- 10 kg y⁻¹ Other crustaceans
- 7.6 kg y⁻¹ Winkles
- 4.2 kg y⁻¹ Other molluscs
- 870 hours y⁻¹ over mud and sand

The sentence "For molluscs (winkles and other molluscs)..." (page 52) should read

"For molluscs (winkles and other molluscs), the overall consumption rates were unchanged in the 2018 and decreased in the 2014–2018 datasets."

The revised doses to this group are given below. They apply to the relevant portions of Tables 1.4, 2.17 and 7.1. Table 2.16 has been corrected for RIFE 25 onwards.

The sentence "The doses from artificial radionuclides to people..." (page 53) should read

"The doses from artificial radionuclides to people, who consume a large amount of seafood, were 0.066 mSv (0.082 mSv in 2017) and 0.072 mSv (0.085 mSv in 2017) using the annual and five-year rolling average habits data, respectively, in 2018."

The sentence "Taking artificial and enhanced natural radionuclides together..." (page 53) should read

Taking artificial and enhanced natural radionuclides together, the source specific doses were both 0.44 mSv (values are rounded to two significant figures) for the both the annual and five-year rolling average habits data.

Table 2.17 Individual radiation exposures, Sellafield, 2018									
Representative person	Exposure, mSv per year								
	Total	Seafood (nuclear industry discharges)	Seafood (other discharges)	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways	Direct radiation from site	
Source specfic doses Seafood consumers									
Local seafood consumers (habits averaged 2014-18)	0.40 ^f	0.044	0.33	-	0.028	-	-	-	

^f The dose due to nuclear industry discharges was 0.072 mSv

	Page, Section	Comment
RIFE 23 2017	Page 13, Technical summary	The two sentences starting "In Wales, " should be replaced with "In Wales, the representative person who received the highest dose from permitted releases of radioactivity consumed locally produced food at Trawsfynydd. The dose was 0.028 mSv in 2017."
	Page 42, Figure 2.2	The discharge data for non-uranic alpha (liquid) for 2017 was 9.43E+06 Bq, not zero. This is shown correctly in Figure 2.2 in RIFE-24
	Page 91, Table 2.12	The concentration of sulphur-35 in Half Moon Bay Seaweed was 9.4 Bq kg ⁻¹
	Page 108, Table 3.2(a)	The correct value for ²³⁸ Pu in cod collected from Scrabster is 0.00035 Bq kg ⁻¹ (fresh).
	Page 145, Table 4.6(a)	The concentration of polonium-210 in Morecambe Mussels was 41 Bq kg ⁻¹
	Page 149, Table 4.8(a)	The concentration of strontium-90 in Southwold Harbour sediments was <6.6 Bq kg ⁻¹
	Page 164, Section 5.2	Replace "Gaseous and liquid discharges may be made under permit but were both reported as nil in 2017." With "Gaseous and liquid discharges may be made under permit. Gaseous discharges were reported as nil in 2017."
	Pages 220-221, Tables 8.7 (footnote a) and 8.9, Page 207, section 8.8	In Table 8.7, footnote a, the concentrations of polonium-210 and radium-226 the values are <0.010 Bq l ⁻¹ and 0.012 Bq l ⁻¹ , respectively. The revised doses are given (in bold) in Table 8.9 (abbreviated below).
		Subsequently (on page 207) "The mean annual dose from consuming drinking water in the UK was assessed as 0.015 mSv in 2017 (Table 8.9). The highest annual dose was estimated to be 0.028 mSv for drinking water from Matlock, Derbyshire. The estimated doses were dominated by naturally occurring radionuclides and are similar to those in recent years."

Table 8.9 Doses from radionuclides in drinking water, 2017							
Region	Mean Exposure, m	nSv per year	Maximum exposure, mSv per year				
	Man-made radionuclides	Naturally occurring radionuclides	All radionuclides	Location	All radionuclides		
England	<0.001	0.028	0.028		0.028		
UK	<0.001	0.014	0.015	Matlock, Groundwater, Derbyshire	0.028		

Page 241, Table A2.1, The "Beta" category should read "All other radionuclides" Dounreay (Vulcan)

	Page, Section	Comment					
	Page 249, Table A2.4	The transfer data for Dounrea Volume – 4.88E+02 m³, Alpha – 4.54E+10 Bq	•		eta/Gamma		
RIFE-22 2017	Page 135, Table 4.2(b)	The mean gamma dose rate for Lydney Rocks should read 0.0					
	Page 246, Table A2.3	Niobium-84 should read Niob	oium-94.				
Previous RIFE reports (RIFE 9,11, 13-22)	Table A2.1	Gaseous discharges from Do In April 2017, DSRL notified information had been used in and non-alpha discharges from DSRL have also undertaken a monitoring arrangements. This in particulate flow measurement discharges going back to 2003. The revised discharge data for from Dounreay are given in the supersedes the previously put from Dounreay" (RIFE 15-2)	SEPA that if the calculate in the PFR for site wide restricted and the calculation and	ion of gased acility. Furth eview of the entified imple calculation of adionuclide pha, beta and ow. This tak Gaseous Dis	bus tritium her to this, ir discharge rovements of tritium groupings. d non-alpha ble also		
			Year	Revised Discharges	Revised % of annual limit		
		Prototype Fast Reactor: Tritium	2009	2.55E+11	2.4		
			2010	7.19E+10	<1		
			2011	4.74E+10	<1		

	<u> </u>		
	Year	Revised Discharges	Revised % of annual limit
Prototype Fast Reactor: Tritium	2009	2.55E+11	2.4
	2010	7.19E+10	<1
	2011	4.74E+10	<1
	2012	9.56E+10	<1
	2013	6.18E+09	<1
Discharge authorisation revised 2014:	2014	8.05E+07	4.7
Non-alpha	2015	1.21E+08	7.9
	2016	1.11E+08	6.6
Discharge authorisation revised 2014:	Tritium 2009 2.55E+1 2010 7.19E+1 2011 4.74E+1 2012 9.56E+1 2013 6.18E+0 2015 1.21E+0 2016 1.11E+0 2016 1.11E+0 2016 4.46E+1 2016 4.46E+1 2005 7.75E+0 2007 7.86E+0 2009 9.24E+0 2010 6.38E+0 2011 7.43E+0 2012 6.06E+0 2013 8.80E+0 2014 2014 3.25E+1 2015 4.33E+1 2016 4.46E+1 2016 4.46E+1 2007 7.86E+0 2008 6.27E+0 2010 6.38E+0 2011 7.43E+0 2012 6.06E+0 2013 8.80E+0 2013 8.80E+0 2014 2009 9.24E+0 2016 2009 9.24E+0 2017 7.86E+0 2009 9.24E+0 2009 9.24E+0 2009 9.24E+0 2009 9.24E+0 2009 9.24E+0	3.25E+11	1.9
Tritium ^a	2015	4.33E+10	<1
	2016	4.46E+10	<1
East Minor Sources: Alpha	2003	1.31E+05	<1
	2005	7.75E+04	<1
	2007	7.86E+04	<1
	2008	6.27E+04	<1
	2009	9.24E+04	<1
	2010	6.38E+04	<1
	2011	7.43E+04	<1
	2012	6.06E+04	<1
	2013	8.80E+04	<1
East Minor Sources: Beta	2003	1.31E+05	<1
	2011 4.74E+10 2012 9.56E+10 2013 6.18E+09 revised 2014: 2014 8.05E+07 2015 1.21E+08 2016 1.11E+08 revised 2014: 2014 3.25E+11 2015 4.33E+10 2016 4.46E+10 2016 4.46E+10 2003 1.31E+05 2005 7.75E+04 2007 7.86E+04 2009 9.24E+04 2010 6.38E+04 2011 7.43E+04 2012 6.06E+04 2013 8.80E+04 2013 8.80E+04 2013 8.80E+04 2013 8.80E+04 2014 2009 7.75E+04 2009 7.75E+04 2009 9.24E+04 2010 6.38E+04 2009 9.24E+04 2009 9.24E+04 2009 9.24E+04 2009 9.24E+04	<1	
_	2007	7.86E+04	<1
_	2008	6.27E+04	<1
_	2009	9.24E+04	<1
_	2010	6.38E+04	<1
_	2011	7.43E+04	<1
	2012	6.06E+04	<1
	2013	8.80E+04	<1

^a Discharge data for tritium (2014-2016) are still under review. Should these values be revised, data will be updated in RIFE 25

	Page, Sect	ion	Comment					
Previous RIFE reports (RIFE 15-22 inclusive)			Gaseous Discharges from Dounreay In April 2017, DSRL notified SEPA that incorrect duct flowrate information had been used in the calculation of gaseous tritium and non-alpha discharges from the PFR facility. The revised data for tritium and non-alpha discharges are shown below. Values for 2014 are for the period May to December (see RIFE 21 for more details).					
					Year	Revised Discharges	Revised % of annual limit	
			Prototype Fast React	tor:	2009	2.55E+11	2.4	
			Tritium		2010	7.19E+10	<1	
					2011	4.74E+10	<1	
					2012	9.56E+10	<1	
					2013	6.18E+09	<1	
			Discharge authorisa	tion revised 2		8.05E+07	4.7	
			Non-alpha		2015	1.21E+08	7.9	
					2016	1.11E+08	6.6	
			Discharge authorisa	tion revised 2		3.25E+11	1.9	
			Tritium		2015	4.33E+10	<1	
					2016	4.46E+10	<1	
			compared with reprocessing the The reprocessing 390 tonnes of forms	roughput s ng of spent uel, compa	since NDA too Magnox fue ared with an o	o ownership of for 2015/16 original perfor	of the site. was a total of mance targe	
	Page 50, F		reprocessing the The reprocessing 390 tonnes of for 6477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in	roughput sing of spentiuel, compared The footnumstrontiums 8) were ploss RIFE-22.	since NDA to Magnox fue ared with an coote is not cor -90 and caesi otted incorrec	o ownership of for 2015/16 original performent and no lourship the formula of the	the highest of the site. was a total comance targe nger applies arge data for	
	Page 98, S	ection 3.2	reprocessing the The reprocessing 390 tonnes of for of 477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in Replace Iodine-	roughput sing of spentiuel, compared The footnum strontium 8) were plost RIFE-22.	since NDA too Magnox fue ared with an coote is not cor -90 and caesi otted incorrect	o ownership of for 2015/16 original performent and no lourn-137 discharge, it is shown wice).	the highest of the site. was a total of mance targe nger applies arge data for n corrected	
	-	ection 3.2	reprocessing the The reprocessing 390 tonnes of for 6477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in	roughput song of spentiuel, compared The footnum strontium (8) were ploss RIFE-22.	since NDA too Magnox fue ared with an coote is not cor -90 and caesi otted incorrect	o ownership of for 2015/16 original performent and no lourn-137 discharge, it is shown wice).	the highest of the site. was a total of mance targe nger applies arge data for n corrected	
	Page 98, S Page 143,	Table	reprocessing the The reprocessing 390 tonnes of for of 477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in Replace Iodine-The concentration	roughput song of spentiuel, compared The footnot strontium Solution of RIFE-22. -125 with solution of plute strong does not plute solution of plute strong does areas or rivers.	since NDA too Magnox fue ared with an of ote is not cor- -90 and caesi otted incorrect iodine-131 (to- onium-239+2 of breakdown wer banks" in	o ownership of for 2015/16 original performect and no locum-137 discharge, it is shown wice).	the highest of the site. was a total of the mance targe mance targe mager applies arge data for a corrected on the corrected radiation	
Site	Page 98, S Page 143, 4.9(a) Page 161,	Table	reprocessing the The reprocessing 390 tonnes of for of 477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in Replace Iodine-The concentration was 109 Bq kg Devonport, the from intertidal a <0.005, the table	roughput song of spentiuel, compared The footnot strontium Solution of RIFE-22. -125 with solution of plute strong does not plute solution of plute strong does areas or rivers.	since NDA too Magnox fue ared with an of ote is not cor- -90 and caesi otted incorrect iodine-131 (to- onium-239+2 of breakdown wer banks" in	o ownership of for 2015/16 original performect and no locum-137 discharge, it is shown wice).	the highest of the site. was a total of the mance targe mance targe mager applies arge data for a corrected on the corrected radiation	
Site	Page 98, S Page 143, 4.9(a) Page 161,	Table Table 5.1	reprocessing the The reprocessing 390 tonnes of fit of 477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in Replace Iodine-The concentration was 109 Bq kg Devonport, the from intertidal a <0.005, the table of the concentration of	roughput song of spentiuel, compared The footnot strontium Solution of RIFE-22. -125 with solution of plute strong does not plute solution of plute strong does areas or rivers.	since NDA too Magnox fue ared with an of ote is not cor- -90 and caesi otted incorrect iodine-131 (to- onium-239+2 of breakdown wer banks" in	o ownership of for 2015/16 original performect and no locum-137 discharge, it is shown wice).	the highest of the site. was a total o mance targe nger applies arge data for n corrected It (pipeline)	
Site	Page 98, S Page 143, 4.9(a) Page 161,	Table Table 5.1	reprocessing the The reprocessing 390 tonnes of fit of 477 tonnes." The carbon-14, 2015 (figure 2.8 in Figure 2.9 in Replace Iodine-The concentration was 109 Bq kg Devonport, the from intertidal a <0.005, the table of the concentration of	roughput song of spentiuel, compared The footnum strontium strontium strontium R) were ploud RIFE-22. -125 with strong of plutonum strong plu	since NDA too Magnox fue ared with an or note is not cor -90 and caesi otted incorrect iodine-131 (to onium-239+2 of breakdown wer banks" in ead. External radiation from intertidal areas, river banks or	o ownership of for 2015/16 original performent and no locum-137 discharged the first shown wice). 40 in sediment and for "External the table shown the former sediment and se	the highest of the site. was a total o mance targe nger applies arge data for n corrected radiation ald read Gaseous plume related	

	Page, Section	Comm	ient				
Previous RIFE reports (RIFE 19–21 inclusive)	Table A2.1	Gaseous discharges from Chapelcross Replace the Tritium and all other radionuclides discharge limits with 7.50E+14 and 2.50E+09, respectively. The authorisation was revised 1 May 2013.					
RIFE-20 2014	201, Table 8.1	Iodine-129 data were entered incorrectly and should be removed with the exception of Alderney <i>Fucus vesiculosus</i> which was undertaken by radiochemistry. All other results reported as ¹²⁹ I were actually ¹³¹ I.					
RIFE-17-20 2014	86, Table 2.11	The ur	nits of Mean	beta dose	rate in tissue s	should rea	d uSvh ⁻¹
RIFE-19 2013	183, Table 6.1	Cardiff, these are small changes to the <i>total dose</i> and source-specific assessments shown below. They apply to relevant parts of text, tables (1.2B, 1.4 and 6.1) and figure (1.3)					
Site	Exposed	Exposure,	mSv per year				
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site
Total dose – liquid discharges	Adult occupants over sediment	0.006	<0.005	_	0.005	-	_
Source specific dose	s Prenatal children of seafood consumers	0.009	<0.005	-	0.009	-	-
	41, Figure 2.13	The cobalt-60 liquid discharge datum for 2013 (Figure 2.13, RIFE-19) was plotted incorrectly, it is shown corrected in Figure 2.13 in RIFE-20					-
	247, Appendix A2.1	Chapelcross, replace All other nuclides limit of 7.50E+09 Bq with 5.15E+09 Bq					
	109, Figure 3.5	The discharge data for ⁶⁰ Co and ¹³⁷ Cs for 2013 (figure 3.5) were plotted incorrectly, they are shown corrected in Figure 3.5 in RIFE-20					
	232, Table 8.15	Eu-155 results have been revised					
	Location	Samp	le source		reported 155	Eu	revised ¹⁵⁵ Eu
	Firth of Clyde	East o	of Gull Point		<0	21	0.72
	Firth of Clyde	SW o	f Lady Isle		<0.3	36	2.1
	Firth of Clyde	East o	of Johnston's	s Point	<0.2	22	0.81
	Firth of Clyde	East o	of Brodick		<0	39	1.8
	Clyde Estuary	The H	łole		<0.	50	2.1

33, Table 1.2

Some data was missing from Table 1.2 C (electronic version only), revised table shown below.

Site	Representative person ^a	Exposure, mSv			
		Total	Dominant contributions ^b		
C All sources					
Aldermaston and Burghfield	Infant milk consumer	< 0.005	Milk, ³ Hc, ¹³⁷ Csc, ²³⁸ U		
Amersham	Local adult inhabitant (0-0.25km)	0.22	Direct radiation		
Barrow	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment		
Berkeley and Oldbury	Adult occupant over sediment	0.010	Gamma dose rate over sediment		
Bradwell	Prenatal child of green vegetable consumers	<0.005	Green vegetables, potatoes, root vegetables, ¹⁴ C		
Capenhurst	Local inhabitant aged 10y (0-0.25km)	0.080	Direct radiation		
Cardiff	Infant milk consumer	0.010	Milk, ¹⁴ C, ³² P ^c		
Chapelcross	Infant milk consumer	0.024	Milk, ⁹⁰ Sr, ²⁴¹ Am ^c		
Derby	Adult consumer of locally sourced water	< 0.005	Water, ⁶⁰ Co ^c		
Devonport	Adult fish consumer	< 0.005	Fish, ¹⁴ C, ²⁴¹ Am ^c		
Dounreay	Adult green vegetable consumer	0.012	Domestic fruit, potatoes, root vegetables		
Dungeness	Local adult inhabitant (0.5–1km)	0.021	Direct radiation		
Faslane	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		
Hartlepool	Local adult inhabitant (0–0.25km)	0.024	Direct radiation, gamma dose rate over sediment		
Harwell	Prenatal child of local inhabitants (0–0.25km)	0.010	Direct radiation		
Heysham	Adult mollusc consumer	0.028	Fish, gamma dose rate over sediment, molluscs, ¹³⁷ Cs, ^{239/240} Pu, ²⁴¹ Am		
Hinkley Point	Adult occupant over sediment	0.022	Gamma dose rate over sediment		
Hunterston	Prenatal child of local inhabitants (0.25–0.5km)	0.021	Direct radiation		
LLWR near Drigg ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, ¹²⁹ I ^c , ²¹⁰ Po		
Rosyth	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		
Sellafield ^{e,g}	Adult occupant on a houseboat	0.076	Gamma dose rate over sediment		
Sizewell	Local adult inhabitant (0–0.25km)	0.021	Direct radiation		
Springfields	Adult occupant on a houseboat	0.060	Gamma dose rate over sediment		
Torness	Local adult inhabitant (0.5–1km)	0.020	Direct radiation		
Trawsfynydd	Infant local inhabitant (0.25–0.5km)	0.017	Milk, ¹⁴ C, ²⁴¹ Am		
Whitehaven ^e	Adult fish consumer	0.061 ^f	Crustaceans, fish, gamma dose rate over sediment, 129Ic, 210Po		
Winfrith	Infant milk consumer	< 0.005	Milk, ¹⁴ C		
Wylfa	Adult occupant over sediment	< 0.005	Gamma dose rate over sediment		

- ^a Selected on the basis of providing the highest dose from the pathways associated with the sources as defined in A, B or C
- Pathways and radionuclides that contribute more than 10% of the total dose. Some radionuclides are reported as being at the limits of detection and based on these measurements, an upper estimate of dose is calculated
- The assessed contribution is based on data being wholly at limits of detection
- d The effects of gaseous discharges and direct radiation are not assessed for this site
- The effects of liquid discharges from Sellafield, Whitehaven and LLWR near Drigg are considered together when assessing exposures at these sites because their effects are manifested in a common area of the Cumbrian coast
- f The doses from man-made and naturally occurring radionuclides were 0.040 and 0.021 mSv respectively. The source of naturally occurring radionuclides was a phosphate processing works near Sellafield at Whitehaven. Minor discharges of radionuclides were also made from the LLWR near Drigg into the same area
- ⁹ The highest exposure due to operations at Sellafield was to a person living on a houseboat near Barrow

RIFE-18 2012

134, Table 4.1

Hinkley Point. These are small changes to the total dose and source specific dose shown below. The apply to relevant points of text, tables (S, 1.2, 1.3, 1.4 and 4.1) and figures (1.1, 4.1 and 6.2).

Site	Exposed	Exposure, mSv per year					
	population ^a	Total	Fish and shellfish	Other local food	External radiation from intertidal areas or the shoreline	Gaseous plume related pathways	Direct radiation from site
Total dose – all sources	Adult occupants over sediment	0.013	<0.005	<0.005	0.012	<0.005	<0.005
Source specific doses	Seafood consumers	0.018	<0.005	-	0.017	_	-

240, Appendix 2

Third entry on the table – Sellafield – the discharges during 2012 (Bq and % of annual limitb) columns and should have read:

Beta	1.03E+09	2.5
Antimony-125	3.20E+09	11
Caesium-137	1.59E+08	2.7

	Page, Section		Comment					
	41, Figure 2.3			as plotted	seboat dose r incorrectly, i			
	134, Table 2.18			apply to r	mall changes relevant poin			
Exposed	Exposure,	mSv per yea	ar					
population ^a	Total	Seafood (nuclear industry discharge	Seafood (other discharges) es)	Other local food	External radiation from intertidal areas, river banks or fishing gear	Intakes of sediment and water	Gaseous plume related pathways	Direct radiation from site
Total dose – maz effect of gaseou and direct radia	is release							
Infant root vege consumers	etable 0.011	_	_	0.011	-	_	_	
	196, Table 7.7		Oil & Gas (Offshore)	ed previous to should have een corrected	been class	sified as O	il & Gas
RIFE-17 2011	52, Section 2		On Figure 2.14 the year labels from 2004 to 2011 were underneath the bar chart incorrectly and should have been one place to the right, as shown in RIFE 18.					
	61, Section 2		Springfields 'Source specific doses' last entry on the table should read: 'Consumers of locally grown food' not 'Infant consumers of locally grown food'					
	209, Section 9		Line 7, paragraph 7, should read: Tritium concentrations in the western English Channel were also very low (Figure 9.7).					
	240, Appendix		Third entry on the table – Capenhurst (Urenco UK) the discharg limits (annual equivalent) ^a Bq column should have read: Uranium 7.50E+06 Other Alpha 2.40E+06 Technetium-99 1.00E+08 Others 2.25E+09					•

	Page, Section	Comment
RIFE-14-17 2011	CD, Appendix 1	Table X2.2 Sellafield Q – Ravenglass nature warden assessment, the ingestion and inhalation rates of sediment have been incorrect, they should have read:
		RIFE-14 3.1 10-3 kg y-1 mud by inadvertant ingestion 5.6 10-5 kg y-1 mud by resuspension and inhalation
		RIFE-15 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation
		RIFE-16 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation
		RIFE-17 3.4 10-3 kg y-1 mud by inadvertant ingestion 6.3 10-5 kg y-1 mud by resuspension and inhalation
RIFE-16 2010	30, Table 1.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am
	37, Section 2	Line 13, paragraph 3, second column should read The dose to wildfowlers and farmers from exposure over salt marsh was 0.032 mSv, which was less than 4 per cent of the dose limit for members of the public of 1 mSv. The small decrease in dose from 0.036 mSv (in 2009) was due to lower gamma dose rates over marsh in 2010.
	100, Section 3	The graph in Figure 3.2 is missing 2010 data. The data for 2010 is shown in Figure 3.2 RIFE 17
	122, Section 4	Line 7, paragraph 1, first column should read An increase in the fish and crustacean consumption rates has been observed, together with a decrease in the mollusc and occupancy rates, in comparison with those of the previous survey reported in 2006.
	Appendix 1, Annex 2	Table X2.2 Sellafield Group N winkle consumption should have said 15kg y ⁻¹ (not 18 kg y ⁻¹)
RIFE-15 2009	233, Table A2.1	MoD Coulport under reported discharges for the end of 2009. The ³ H discharge for 2009 should have been 3.40 E-03 TBq.
	249, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.012 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am
RIFE-14 2008	12, Figure S1	Both bars for Bradwell should be the same height. The bar for exposures due to liquid wastes is wrong.

	Page, Section	Comment								
RIFE-14 2008	33, Section 2	Springfields, doses to the public Lines 1 & 2 second column should readpathways from gaseous discharges were less than 0.005mSv which was less than 0.5 per cent								
	51, Figure 2.22	The bar for Wh height as the ba			should hav	e been th	ne same			
	109, Section 4	Gaseous discharges and terrestrial monitoring Line 28, first column should read The results of monitoring for 2008								
	167, Table 6.3a	Results for Cardiff East WWTW should have been:								
	Material	Location or selection ^b	No. of sampling observ-	Mean ra Bq kg ⁻¹	dioactivity co	ncentration	n (fresh)ª,			
			ations ^c	Organic						
				³ H ^e	³ H	³H ^f	14 ^c			
	Terrestrial samples Crude effluent Final effluent Sludge pellets Solids from crude effluent	Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW Cardiff East WWTW	3E 3E 3E 3E	<150 <60	<220 <70 76000 <7500	82 80	<11 <11 740 <1800			
	225, Table A2.2	Table A2.2 Sellafield (sea pipelines) Tritium discharge limit should have read 2 10 ⁴								
	236, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.010 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am								
RIFE-13 2007	127, Table 4.5a	The ²¹⁰ Po and ²¹⁰ Pb results are the wrong way round for South Gare winkles. ²¹⁰ Po should be 11 and ²¹⁰ Pb should be 0.46 Bqkg ⁻								
	153, Table 5.1	Derby, the total exposure and exposure from intakes of sediment and water should have been <0.005 mSv.								
	161, Section 6 Key points	Line 17 second • The total dose			ad					
	236, Table A4.2B	Trawsfynydd, should read Adult fish consumers 0.014 Fish, gamma dose rate over sediment, 90Sr, 137Cs, 241Am								
	239, Appendix 5	Line 3 first colu indicated that				e no adv	erse impact			
RIFE-12 2006	70, Table 2.7	The concentration been 29.	on of ²⁴¹ A	m in wi	nkles at Di	rigg shou	ıld have			

	Page, Section	Comme	ent			
	103, Section 4 Key points			nn replace with from gaseous		ncreased.
	187, Figure 8.5	The ran	ige in the key	should have be	een 2 to 8.	
	234, Table A4.2B	Trawsfy	ynydd, should	read		
		Prenata consum	l children of fis ers		Fish, gamma sediment, ⁹⁰ Si	dose rate over
Previous RIFE reports		Gaseou The pul				
(RIFE 2–12 inclusive)		in the y incorrect limit fo	ctly. The revis r Alpha in 199	998-2001 and 2 ed data is give 97 should read	2005-6 were non below, the 12% (not 1.2)	reported % of annual 2%).
(RIFE 2–12		in the y	ears, 1996, 19 ctly. The revis	98-2001 and 2 ed data is give	2005-6 were in below, the	reported % of annual
(RIFE 2–12		in the y incorrect limit fo	ears, 1996, 19 ctly. The revis r Alpha in 199	998-2001 and 2 ed data is give 97 should read % of	2005-6 were non below, the 12% (not 1.2) Beta	reported % of annual 2%).
(RIFE 2–12		in the y incorrect limit fo	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq)	98-2001 and 2 ed data is give 97 should read % of annual Limit	2005-6 were ren below, the 12% (not 1.2) Beta (Bq)	reported % of annual 2%). % of annual Limit
(RIFE 2–12		in the y incorred limit fo	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08	998-2001 and 2 ed data is give 97 should read % of annual Limit	2005-6 were ren below, the 12% (not 1.2 Beta (Bq) 3.40E+09	reported % of annual 2%). % of annual Limit 7.1
(RIFE 2–12		in the y incorred limit for Year 1996 1998	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08 8.20E+07	ed data is give of should read % of annual Limit 11 4.8	2005-6 were ren below, the 12% (not 1.2) Beta (Bq) 3.40E+09 1.60E+09	reported % of annual 2%). % of annual Limit 7.1 3.3
(RIFE 2–12		in the y incorrect limit for Year 1996 1998 1999	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08 8.20E+07 1.70E+08	ed data is give of should read % of annual Limit 11 4.8	2005-6 were non below, the 12% (not 1.2) Beta (Bq) 3.40E+09 1.60E+09 2.20E+09	reported % of annual 2%). % of annual Limit 7.1 3.3 4.6
(RIFE 2–12		in the y incorrect limit fo Year 1996 1998 1999 2000	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08 8.20E+07 1.70E+08 9.00E+07	998-2001 and 2 ed data is give 97 should read % of annual Limit 11 4.8 10 5.3	2005-6 were non below, the 12% (not 1.2) Beta (Bq) 3.40E+09 1.60E+09 2.20E+09 1.10E+09	reported % of annual 2%). % of annual Limit 7.1 3.3 4.6 2.3
(RIFE 2–12		in the y incorrect limit fo Year 1996 1998 1999 2000 2001	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08 8.20E+07 1.70E+08 9.00E+07 7.20E+07	ed data is give of should read % of annual Limit 11 4.8 10 5.3 3.7	2005-6 were non below, the 12% (not 1.2) Beta (Bq) 3.40E+09 1.60E+09 2.20E+09 1.10E+09 9.70E+08	reported % of annual 2%). % of annual Limit 7.1 3.3 4.6 2.3 <1
(RIFE 2–12	270, Table A7.2B	in the y incorred limit fo Year 1996 1998 1999 2000 2001 2005 2006	ears, 1996, 19 ctly. The revis r Alpha in 199 Alpha (Bq) 1.80E+08 8.20E+07 1.70E+08 9.00E+07 7.20E+07 8.90E+07	998-2001 and 2 ed data is give 97 should read % of annual Limit 11 4.8 10 5.3 3.7 10 13	2005-6 were response to below, the 12% (not 1.2) Beta (Bq) 3.40E+09 1.60E+09 2.20E+09 1.10E+09 9.70E+08 1.70E+09	reported % of annual 2%). % of annual Limit 7.1 3.3 4.6 2.3 <1 4.0

In May 2016 release of un the authorise RIFE-22 for	charges of krypton-85 from 6, DSRL notified SEPA of the monitored krypton-85 gase ed discharge outlet at the DI more detail). The krypton-land are presented below.	he identification of the eous discharges throug FR facility (see table A
release of un the authorise RIFE-22 for	nmonitored krypton-85 gase ed discharge outlet at the Dl more detail). The krypton-	eous discharges throug FR facility (see table A
been revised	and are presented below.	
Year	Revised Discharge (Bq)	Revised % of annual limit
1995	1.46E+08	37
1996	1.47E+08	37
1997	1.25E+08	31
1998	1.25E+08	31
1999	1.25E+08	31
2000	1.26E+08	31
		31
		130
		89
		21
		5.9
		5.9
		6.4
		7.6
		9.0
		15
		23
		24
-		270
Discharge autho	risation revised 2014	
2014	2.58E+08	<1
2015	7.92E+08	<1
	1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Discharge autho	1997 1.25E+08 1998 1.25E+08 1999 1.25E+08 2000 1.26E+08 2001 1.25E+08 2002 5.31E+08 2003 3.57E+08 2004 8.35E+07 2005 2.37E+07 2006 2.37E+07 2006 2.37E+07 2008 3.04E+07 2009 3.61E+07 2010 5.89E+07 2011 9.29E+07 2012 9.68E+07 2013 1.07E+09 Discharge authorisation revised 2014 2014 2.58E+08

Incorrect units were shown. The correct units were mBq $l^{\text{-}1}$.

column.

206, Figures 9.5 and

9.6

Page, Section	Comment
225, Table 9.15	Incorrct headings in the top part of the table. Should have been as below:

Location	Sample source		No. of sampling	Mean ra	adioactivity	concentrati	on, Bq l ⁻¹	
			observ- ations	^{3}H	$^{40}\mathrm{K}$	⁹⁰ Sr	¹³⁷ Cs	²¹⁰ Po
Wales Gwynedd Mid-Glamorgan	Cwm Ystradllyn Treatment Works Llwyn-on Reservoir			<4.0 <4.0	<0.020 <0.045	0.0036 0.0030	0.0018 <0.0010	<0.010 <0.013
Powys	Elan Valley Reservoir		4	<4.0	< 0.050	0.0040	0.00090	< 0.010
	48, Table A1.2	8.90 10 ⁻⁵ a	discharge and 0.0017	4 TBq	respect	ively.		
	48, Table A1.2 51, Table A1.2	8.90 10 ⁻⁵ a	and 0.0017	4 TBq n discl	respect	ively.		
2: 8-11 C	51, Table A1.2 oncentrations in	8.90 10 ⁻⁵ a Aldermast 14.1 and 8	and 0.0017 ton Tritiun 3.3 respect	74 TBq n disch ively. es with	respect	ively. d % lim lly high	it should	d have
2: 3-11 C	51, Table A1.2	Aldermast 14.1 and 8 For sedim discovered outside the	and 0.0017 ton Tritiun 3.3 respect	"4 TBq ively. es with that the	respect narge and n unusua e resultin bration	ively. d % lim lly high ng samp range. F	it should water cole bulk of	I have

These amendments do not significantly affect any assessments, charts or statements in the relevant RIFE reports.

Year	Site	Location	No. of sampling	Mean	radioact	ivity co	ncentrati	on (dry), B	q kg-1		
			observ- ations	57Co	⁶⁰ Co		⁶⁵ Zn	⁹⁵ Zr	95Nb	¹⁰⁶ Ru	¹²⁵ Sb
2002	Aldermaston	Reading (Kennet)	4			-					
	Bradwell	Stream draining south Maldon	4 2		<3.4						
		Waterside	2		<4.0						
	Capenhurst Cardiff	Rossmore (4.3 km downstream) Canal	2 2								
		West of pipeline	2 2		27						
	Devonport Dungeness	Lopwell Pilot Sands	2		<3.7 <0.9						
	Harwell	Appleford Day's Lock	4 4		<0.6 <0.5						
	Sellafield	Caerhun	2		<3.3			<9.6	<7.7	<23	<9.2
003	Aldermaston	Reading (Kennet)	4								
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	< 0.30	<1.1		<1.5				
	Bradwell	Waterside	2	\0.30	<2.0		\1. J				
	Cardiff Derby	Canal River Derwent (downstream)	1		<1.0						
	Devonport	Lopwell	2		<2.5						
004	Aldermaston	Reading (Kennet)	4								
		Aldermaston Stream draining south	4 4								
	Amersham	Upstream of outfall (Grand Union Canal) 2	•	< 6.4	<1.8		<4.1				
	Cardiff Sellafield	Canal Caerhun	2 2		<1.6			<4.5	<2.2	<12	<13
005	Aldermaston	Reading (Kennet)	4								
	Amersham Cardiff	Upstream of outfall (Grand Union Canal) 2	2	< 5.3	<1.6		<3.6				
	Harwell	Canal Lydebank Brook	2 4		<1.7						
	Sellafield	Appleford Caerhun	4 2		<2.5 <2.6			<8.8	<6.8	<20	<20
	Trawsfynydd	Bailey Bridge	2		<8.3			~0.0	~0.0	-20	<44
ear	Site	Location	No. of	Mean	radioac	ivity co	oncentrati	on (dry), I	3q kg ⁻¹		
			sampling observ-								
			ations	^{125}I	^{131}I	134 <u>Cs</u>	137 <u>Cs</u>	<u>144Ce</u>	¹⁵⁴ Eu_	155 Eu	241 Am
2002	Aldermaston	Reading (Kennet)	4				7.3				<1.9
	Bradwell	Stream draining south Maldon	4 2			6.5	<5.1 80				<1.2 <4.0
		Waterside	2			3.9	59				<13
	Capenhurst Cardiff	Rossmore (4.3 km downstream) Canal	2 2	< 0.80			<4.4 2.4				
		West of pipeline Lopwell	2 2 2	<3.1			33 7.7				
	Devonport Dungeness	Pilot Sands	2				<0.90				<1.6
	Harwell	Appleford	4 4				<13 6.0				
	Sellafield	Day's Lock Caerhun	2			<3.4	430	<25	<7.3	<8.0	75
003	Aldermaston	Reading (Kennet)	4				8.0				<1.6
	Amersham	Aldermaston Outfall (Grand Union Canal)	4 3	<1.0	<550		6.3 <2.1				<2.7
	Bradwell	Waterside	2		-550		35				<2.7
	Cardiff Derby	Canal River Derwent (downstream)	1	<1.4			16				
	Devonport	Lopwell	2				<10				
004	Aldermaston	Reading (Kennet)	4				5.4				<1.1
		Aldermaston Stream draining south	4				<3.9 <2.8				<1.3 1.6
	Amersham	Upstream of outfall (Grand Union Canal) 2		< 0.80	<1.4		10				
	Cardiff Sellafield	Canal Caerhun	2 2	<1.5		<1.5	11 220	<5.7	<7.3	<3.1	51
005	Aldermaston	Reading (Kennet)	4				< 3.9				6.5
	Amersham	Upstream of outfall (Grand Union Canal) 2		<1.0	< 9.1		6.2				
	Cardiff Harwell	Canal Lydebank Brook	2 4	<1.8			9.1 9.0				
	Sellafield	Appleford Caerhun	4 2			<2.5	<11 230	<9.3	<12	<5.3	59

Pag	ge, Section	1	Comm	ient							
RIFE-10 75, 004	, Table 3.7		The er	The entry for Haverigg should read 0.087.							
45,	Figure 3.5	8		The americium-241 discharge data for 2004 was plotted incorrectly, it is shown corrected in Figure 3.12 in RIFE-11.							
151 154 166	87, Table 3.15 151 Table 6.1(a) 154, Table 6.3(a) 166 Table 7.3(a) 173, Table 8.1(a)			vhilst they	•	ave been 1		rted as bein is Bq kg ⁻¹ (
Site/location		⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	²³⁸ U		
	max	<0.43 0.80	<1.4 <1.5	<0.73 <0.80			16	0.64	15		
Aldermaston (Table 6.1(a))							7.8	0.29	7.2		
max	Α.								7.2		
, , , , , , , , , , , , , , , , , , , ,					<0.47	7.1	27	0.94	23		

223, Table A1.1

Drigg (Table 8.1)

The % annual limit for $^{106}\mbox{Ru}$ discharge at Sellafield was 7% (not 70%).

0.42

246, Table A5.1

Some dose per unit intake values were missing for 1 yr old. These were:

Radionuclide	Dose per unit intake by inhalation
	using ICRP-60 methodology (Sv Bq ⁻¹)
Sr-90 [†]	1.2E-07
Zr-95 [†]	2.1E-08
Ba-140 [†]	2.6E-08
Pb-210 [†]	4.0E-06
Th-228 [†]	1.4E-04
U-238	9.4E-06

[†] Energy and dose per unit intake data include the effects of radiations of shortlived daughter products

	Page, Se	ection		Comm	ent							
RIFE-9	82, Tabl	le 3.15		The fo	llowing	activit	ty in soil	data we	re repor	ted as be	eing Bq kg	
2003	138 Tab	(dry) v	(dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All									
		ole $6.3(a)$	` •	data are averages unless stated.								
		ole 7.3(a)		data are averages arriess stated.								
	,	ole 8.1(a)										
Site/location		⁶⁰ Co	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	154 Eu	²³⁴ U	²³⁵ U	238 L J	²⁴¹ Am	
Sellafield (Table 3.15)		< 0.90	<3.3	<1.2	< 0.40	75	< 0.50				5.9	
	max	1.6	<4.2	<1.6		89	< 0.60	11	0.54	10	7.7	
	max							11	0.48	11		
Derby (Table 6.3(a))	max							47	1.6	40		
Cardiff (Table 7.3(a))					< 0.40	8.8		.,	1.0	10		
	max					11						
Drigg (Table 8.1)								6.7	0.26	6.7		
	max							6.7	0.26	6.7		

185, Table 9.12 Some data were incorrect. The amended version of the table is attached.

Location	Sample	No. of	Mean	radioactivit	y concentratio	n ^a in rainwater an	d air				
		sampling observ- ations	³ H ⁷	Ве	⁹⁰ Sr ^b	¹³⁷ Cs	²¹⁰ Pb	²¹⁰ Po	²²⁸ Th	Gross alpha ^b	Gross beta ^b
Ceredigion											
Aberporth	Rainwater Air	12 4	<2.4	<1.6 0.0022		<0.053 <0.00000052	0.10 0.00017		*		
Co. Down											
Conlig	Rainwater Air	4 4		<1.5 0.0022		<0.022 <0.00000063	* 0.00015		*		
Dumfries and G	alloway										
	Eskdalemuir Air	Rainwater 4	4	<2.7 0.0018	1.2	<0.00000043	<0.0098 0.00013	0.094	*	*	
North Yorkshire	;										
Dishforth	Rainwater Air	4 4		<2.2 0.0016		<0.039 <0.00000055	* 0.00014		*		
Oxfordshire											
Chilton	Rainwater Air	12 13		<1.5 0.0018	< 0.00064	<0.032 <0.00000034	0.32 0.00027	< 0.000014	*	0.074	0.17
Shetland											
Lerwick	Rainwater Air	4 4		1.6 0.0015		<0.017 <0.00000052	* 0.00010		*		
Suffolk											
Orfordness	Rainwater Air	4 4	<2.2	<2.4 0.0022		<0.048 <0.0000053	* 0.00020		5.2 *		

The concentration of $^{210}\mbox{Po}$ in Cornwall, River Fowey was $<\!\!0.0098$ Bq $l^{\text{-}1}.$ 187, Table 9.14

^{*} Not detected by the method used

a Bq I¹ for rainwater and Bq kg¹ for air
b Annual bulk analysis

Page, Section Comme	nt
---------------------	----

188, Table 9.16 A revised version is attached.

0.028	0.028	
0.026	0.026	

a The maximum dose is selected for each nuclide group from data for individual sampling locations.

Many estimates of dose are based on concentration results at limits of detection.

214, Table A1.2 The data shown for Faslane are a duplication of the data for Rosyth and were included in error.

59, Table 4.1 RIFE-8 2002

Two tritium results were omitted. The data are attached.

Table 4.1.	Beta/gamma radioad Sea vicinity and furth		e Irish
Location	Material	No.of sampling observ- ations	³H
Liverpool Bay	Flounder	2	<25
Mersey estuary	Flounder	2	<25

79, Table 4.14 82 Table 4.17 128, Table 7.1(a) 138, Table 8.2(a) The following activity in soil data were reported as being Bq kg-1 (dry) whilst they should have been reported as Bq kg-1 (wet). All data are averages unless stated.

Site/location	60Co	106Ru	¹²⁵ Sb	¹³⁴ Cs	¹³⁷ Cs	^{234}U	^{235}U	^{238}U
Sellafield (Table 4.14)	< 0.80	<2.3	<1.2	68				
max	1.0	<2.7	<1.4	82				
Drigg (Table 4.17)								
max						6.9	0.30	6.5
Aldermaston (Table 7.1(a))								
max						8.7	0.35	8.3
Cardiff (Table 8.2(a))				< 0.30	6.4			
max					8.1			

102, Figure 6.1 The concentration of caesium-137 in Bradwell sediments was plotted incorrectly in Figure 6.1, it is shown corrected in Figure 5.1 of RIFE-9.

b Including tritium

c Including carbon-14 d Analysis of natural radionuclides was not undertaken

	Page, Sec	etion	Co	omment						
RIFE-1-8 1995-2002					-			_	heric disch d in Table	-
			Та	able E1. I	Reassesse from Urer			harges c	f uranium	
			Ye	ar			ginal reporte harge	ed	Reassessed discharge TBq	
			19 19 19 19 19 19 20 20	94 95 96 97 98 99 00		6.74 2.69 1.11 6.80 6.87 8.15 9.64 1.20	1 10°9 1 10°9 0 10°8 1 10°7 0 10°8 7 10°8 5 10°8 1 10°8 0 10°7 5 10°7		2.41 10 ⁻⁷ 2.63 10 ⁻⁷ 2.75 10 ⁻⁷ 8.23 10 ⁻⁷ 4.90 10 ⁻⁷ 1.87 10 ⁻⁶ 1.01 10 ⁻⁶ 8.72 10 ⁻⁷ 9.77 10 ⁻⁷ 6.01 10 ⁻⁷	
RIFE-7 2001	71, Table 80, Table 93, Table 122, Tabl 127, Tabl 130, Tabl	4.15(a) 5.2(a) e 7.3 e 8.2(a)	(d	ry) whils	-	ould have	e been re	_	orted as be as Bq kg ⁻¹	
Site/location		⁶⁰ Co	¹⁰⁶ Ru	125Sb	¹³⁴ Cs	¹³⁷ Cs	²³⁴ U	²³⁵ U	238U	²⁴¹ Am
Sellafield (Table 4.8)	max	<0.80 1.2	<3.1	<1.1		80 97	9.3	0.34	9.1	5.8 6.0
Springfields (Table 4.1 Harwell (Table 5.2(a)) Featherstone position A Featherstone position E Cardiff (Table 8.2(a))	max A (Table 7.3)	<0.40			<0.40	2.9	95 9.5 7.3	4.6 0.41 0.34	89 9.0 7.5	
Derby (Table 9.1)	max max				< 0.40	6.5	18 30	0.80 1.3	18 29	
	176, Tabl	e A1.1	ha	_				_	en as 0.14 n as 350 s	•
	181, Tabl	e A1.2		-	'A' disch 3 and 23	-		of lim	it for tritiu	m should
RIFE-6 2000	31, Section	on 3.5			ed that the les. This				y to natura	al

	Page, Section	The following activity in soil data were reported as being Bq kg ⁻¹ (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.					
	75, Table 4.16 124, Table 9.1						
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Capenhurst (Table 4.16) max Derby (Table 9.1) max	8.5 24	0.35 0.96	8.4 23		
	155, Table 12.1	Target date for project have been March 2003		d carbon-14	in seafood' shoul		
	166, Table A1.1	Discharges of tritium f TBq should have been			e) given as 0.87		
	168, Table A1.2	Sellafield Discharge limits of alp 0.00196 and 0.328 TB activity should have be Discharges of tritium a 2.58 TBq should have Relevant percentages g and 34.	q. Percentagen 4.0 and and 14C from been 355 and	ge of limit for <1. m Sellafield § nd 2.94 TBq.	r alpha and beta given as 213 and		
RIFE-5 1999	71, Table 4.15(a) 73, Table 4.16 118, Table 9.1	The following activity (dry) whilst they shoul data are averages unless	d have beer				
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Springfields (Table 4.15(a)) max Capenhurst (Table 4.16) max Derby (Table 9.1) max	180 12 34	15 0.46 1.3	200 12 31		
	112, Section 8.2	The second sentence o tide washed pasture pa mSv y ⁻¹ respectively." read 0.042 mSv y ⁻¹ . The second sentence of tide washed pasture particles are tide washed pasture as the second sentence of tide washed pasture particles.	thways gav The dose du	e doses of 0.0 ue to the duck	032 and 0.009 c pathway should		
	123, Table 10.2	The concentration of ¹⁴ 960 Bq kg ⁻¹ (wet).	⁴ C in grass f	from Billingh	aam was		
	162, Table A1.2	The Dounreay (Fast Ro	eactor) data	were duplica	ated.		
RIFE-4 1998	70, Table 4.12	The concentrations of were 0.61 and <1.8 Bq is available.					

	Page, Section	Comment					
	75, Table 4.15(a) 77, Table 4.16 116, Table 9.1	The following activity in soil data were reported as being Bq kg (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). All data are averages unless stated.					
		Site/location	²³⁴ U	²³⁵ U	²³⁸ U		
		Springfields (Table 4.15(a)) Capenhurst (Table 4.16) Derby (Table 9.1)	72 7.9 31	3.0 0.30 0.93	68 7.4 26		
	96, Table 6.4(a)	The concentration of <1.0 Bq kg ⁻¹ (dry). N					
	125, Section 11.1	Last but one paragra	ph. The estin	nated dose wa	s 0.094 mSv.		
	131, Section 11.8	Last paragraph, first	sentence. Re	place 1997 wi	th 1998.		
RIFE-3 1997	19, Table 1.1	Replace beta, tritium and 60Co Devonport (sewer) discharges with 1.97 10 ⁻⁶ , 2.22 10 ⁻⁶ , 5.60 10 ⁻⁷ TBq respectively. Replace alpha and beta limit and percentage Greenwich with 4.44 10 ⁻³ TBq and <1 respectively.					
	21, Table 1.2	Replace tritium Win	frith limit wit	h 5 TBq.			
	38, Section 3.6.5	First paragraph. Reformilligray should be			lisievert per		
	70, Table 4.10 72, Table 4.12 81, Table 4.16	The following activi (dry) whilst they sho data are averages un	ould have bee				
	121, Table 9.1	Site/location	²³⁴ U	²³⁵ U	238U		
		Drigg (Table 4.10) Ravenglass (Table 4.12) Springfields (Table 4.12) Capenhurst (Table 4.16)	9.9 18 31 9.5	0.37 0.60 1.5 0.40	9.5 16 30 9.5		
		Derby (Table 9.1)	27	0.97	24		
	90, Section 6.3	The maximum dose adults.	due to gaseou	us disposals w	as received by		
	161, Appendix 4	The 1 year old child	dose coeffici	ent for 99Tc w	as 4.80 10 ⁻⁹ .		
RIFE-2 1996	32, Section 8.1	Lines 8-11. Replace were found on the purifragments were found 10^5 - 10^8 Bq (these ac They were all found public area is largely	ablic beach at d with caesiu tivities were	Dounreay. T m-137 activit measured by t	hirteen small ries in the range he operator).		

Page, Section	Comment						
58, Table 2	Replace ³⁵ S Oldbury limit of 0.8 TBq with 0.75 TBq. Replace ⁴¹ Ar Trawsfynydd limit of 350 TBq with 3500 TBq.						
85, Table 16 87, Table 18 91, Table 20(a) 95, Table 21	The following activity in soil data were reported as being Bq kg (dry) whilst they should have been reported as Bq kg ⁻¹ (wet). Al data are averages unless stated.						
,	` ' ' '		n reported as l	Bq kg ⁻¹ (wet). All			
91, Table 20(a)	` ' ' '		en reported as l	Bq kg ⁻¹ (wet). All			
91, Table 20(a) 95, Table 21	data are averages unle	ess stated.	²³⁵ U	²³⁸ U			
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16)	ess stated. 234U 8.3	235U ————————————————————————————————————	²³⁸ U 7.4			
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16) Ravenglass (Table 18)	ess stated.	²³⁵ U	²³⁸ U			
91, Table 20(a) 95, Table 21	data are averages unlessite/location Drigg (Table 16)	ess stated. 234U 8.3 16	²³⁵ U ————————————————————————————————————	²³⁸ U 7.4 15			

Table 47 This was omitted in error. The data are attached.

Table 47. Radioactivi	ty in plants	near landfi	II sites,	1996						
Sampling location	Material	No of samples	Mean	adioactivit	y concentra	ation (dry)*	, Bq kg ⁻¹			
	NE		³ H	¹⁴ C	90Sr	¹²⁵ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	239+240 Pu
Beddingham Lewes, East Sussex	Grass	4	<40 ±18	130 ±28	1.8 ±0.1	<0.19	<0.61	<0.54 ±0.30	<0.00099 ±0.00037	0.0067 ±0.0012
Cilgwyn Quarry, Gwynedd	"	4	<30	360 ±55	3.0 ±0.2	<063	<0.69	<5.2 ±0.9	< 0.0095	0.018 ± 0.005
Lyndown, Devon	"	4	<28	150 ±30	2.4 ±0.2	<1.3 ±0.2	<0.60	<0.62 ±0.17	< 0.0010	<0.0024 ±0.0009
Witton, Cheshire	"	4	<38	130 ±33	0.76 ±0.12	<1.1 ±0.3	< 0.59	< 0.63	< 0.0013	0.0021 ±0.0016

^{*} Results are available for other artificial nuclides detectable by gamma spectrometry All such results are less than the limit of detection

99, Table 33(a)

RIFE-1 1995	38, Section 16.2	Last but one sentence, replace 1994 with 1995.						
45, Tab	39, Section 16.4	First sentence, 2nd	eplace 1994 wit	with 1995.				
	45, Table 1	Replace ²⁴¹ Am Sellafield (sea pipelines) limit of 1.3 TBq with 0.3 TBq. Replace ⁶⁰ Co Harwell (pipeline) percentage of 1.5 with 6.9.						
	74, Table 16 99, Table 33(a)	The following activity in soil data were reported as being (dry) whilst they should have been reported as Bq kg ⁻¹ (v data are averages unless stated.						
		Site/location	²¹⁰ Po	²³⁸ Pu	239+240 Pu			
		Sellafield (Table 16) Aldermaston (Table 33(a))	64	0.0091	0.36			
		max		0.0091	0.56			

Page, Section	Comment
133, Appendix 3	The average consumption rates of nuts and offal by 10 year old children were 1.5 kg y ⁻¹ . The consumption of whelks at Sellafield by group E (Whitehaven commercial) was 11 kg y ⁻¹ .
138, Appendix 6	The values of t_f and t_s were 0. The transfer factors for beef offal (241 Pu) and lamb (241 Pu) were 2 10^{-2} and 4 10^{-4} respectively.